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A general set of relations involving 3- j  symbols 

H E De Meyert and G Vanden Berghe 
Seminarie voor Wiskundige Natuurkunde, RUG, Krijgslaan 27149, B-9000 Gent, 
Belgium 

Received 14 October 1977 

Abstract. It is shown that the sums 

involving squares of particular 3-j symbols, can be expressed in terms of gamma functions 
and higher transcendentals, for complex ki and for any natural number n. Simplified 
formulae are derived for integral and half-integral ki values. 

1. Introduction 

In investigating recursion relations for the exact solution of the non-relativistic helium 
atom problem, Morgan (1975) showed with the aid of standard recursion techniques 
the following relations involving squares of 3-j symbols: 

= -810 (vl E N). I’ T s1= c -( l 1  

1’=021 -1 0 0 0 

It was conjectured by Morgan (1975) and proved by the present authors (Vanden 
Berghe and De Meyer 1976) that: 

1 1 I‘ 1 - 1 1 ) 2 -  ,1 ( 1  l ‘ + l  l - I ’ + l  2 ) = o  (vl E N). s ~ = l z o ~ ( o  0 0 l ’=021+l  0 0 0 

Using certain properties of hypergeometric functions, an alternative though not 
completely justified proof of (1.2) was given by Rashid (1976). Recently it was 
demonstrated by Morgan (1976) that formulae (1.1) and (1.2) are only two special 
cases of a more general result: 

2 ( 2 1 + t + l )  1 1 ) ( l  l’+J l-l’+J ) = o  
0 Sl.J(z)= 1 ( 

l’=O (2 l+z) (z- l )  21’+2+1-21’+2-1 0 0 

(Vl E N), (1.3) 

which is valid for integral J and for all real or complex z f 0, such that the sum makes 
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sense. For z = 0, the relation (1.3) has to be replaced by 

‘ 1 I I’+J 1-I’+J 1 
r=021-1 I-( 0 0 0 y =  -21+1wo. 

A second derivation of (1.3), based on the Neumann expansions of r12 and l/r12, 
where r12 is the distance between two vectors rl and r2 was also given by Morgan 
(1977). 

In the present paper, a method is outlined to evaluate the quantities sh) 
I (kl, kz, . . . , k,) defined by: 

for arbitrary non-negative integers I and n, and for real ki ( i  = 1,2,  . . .). The particular 
and slightly more difficult case whereby two or more of the ki values coincide, has to 
be treated separately. We also give reduced and simplified formulae for integral and 
half-integral ki values. 

2. Evaluation of @(k) 

In deriving an expression for S!”(k )  defined by (1.4), use will be made of the result 
(1.1) and of the formula: 

1 1 
f~=0(f-r+1)(21‘-1) i 0 I’ 0 1-f’)2=(f+1)(2f+1) 0 - 2110 Wl E N), (2.1) 

which is immediately obtained from formula (10) of Morgan (1975), by changing I’ to 
I - 1’ and by taking into account the relation 

z;f’)2. (2.2) 
I I’+J I - l ’ + J  

(0  0 0 

This last relation follows directly from the definition of the occurring 3-j symbol. 
With the aid of (1.1) and of the identity 

-- - +L) v - 1 
( f - f ’+ l ) (2f t - l )  21+1 1-I’+1 21’-1 

one finds that 

1 2 1 ’ 1  2 - 1 -(l I’ l - f ’ )  = -2&o+- 
21+1I~=of-I  +1 0 0 0 (I + 1)(21+ 1) 21 + 1 

or 

( I  I’ f - fy - 1 - ( I  1 I’ f-l‘)2 1 
(2.3) =- - 

r = o I - l + l  0 0 0 1,=01+1 0 0 0 f+1‘ 
Another important identity is the following: 

(0  0 0 ) =(2l1-1)(l-l’+1) ( l  0 0 I’ 3 (2.4) 
1 I’-1 I - I ’ + l  2 f1(2f-21‘+1) 
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We next define quantities A l ( k )  for positive integral values of k and non-negative 
integers 1, by 

I I l ’ + k - 1  I - l ’ + k - 1  
0 

The A l ( k )  are consecutively reduced for 1 # 0 to 

I-1 I I ‘+k-1  1- l ’+k-1  
+;O 21’+2k + 1 0 0 0 

- (2k - 2)!(21)!(1+ k - 1 ) ! 2  
( k  -- 1)!21!2(21 + 2k - l ) !  

1 - 

l’(21- 21’+ 1 )  

by first separating the term with I‘ = I ,  then changing I’ to 1‘ - 1 in the remaining sum, 
and using (2.2) and (2.4). One can easily check that 

l’(21- 21’ + 1 )  
(21’+2k - 1)(1- E ’ +  1)(21’- 1 )  

2k+1 1 +-- - - 1 ( ( k + l ) ; k - l )  1 
21 +2k  + 1 21’+2k+l k 21’-1 

- 
+ l)(I  - 1‘ + 1)(21’ - 1 )  

Therefore, and with the help of (1.1) and (2.1), A l ( k )  (1 # 0 )  can be transformed to 

(2k - 2)!(21+ 1)!(1+ k - 1)!2(k + 1)(2k - 1 )  
( k - 1 ) ! 2 1 ! 2 ( 2 1 + 2 k - l ) ! k ( 2 1 + 2 k + 1 )  

or 
1 l ’ + k - 1  l - l ‘ + k - l  1 

0 

I 1 ( I  l’+k I-l’+k = E  r=o21’+2k-l 0 0 

where in the last step (2.2) has been used in reversed order. From (2.6) one finds, by 
making use of (2.2) twice, that 

- - 

It is seen by direct calculation that (2.7) is also valid for 1 = 0. Furthermore it is easy to 
demonstrate that (1.3) with J = 0 is a consequence of (2.7) if z is restricted to the even 
natural numbers. The generalisation to J # 0 is then trivial. 
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Rewriting (2.7) in the more appropriate form 

k!2(21+ 2k + I)! s(*) (k - 1)!2(21 + 2k - l)! 
2 S p ( k - 1 )  (VIE N, k E N & k  al), 

(2k)!(I + k ) ! 2  I @)= (2k - 2)!(1+ k - l)! 

and defining a function X!(k )  by: 

the relation (2.8) can be written as: 

Xl(k)  = Xl(k - 1) ( V I E  N, k = 1 , 2 , .  . .). (2.10) 

It follows from (2.10) that 

x,(k)-Xl(O)= 0 (VI E N, V k  E N). (2.11) 

For any natural number 1, the functions Xl(k) and X!(k)-Xl(O) are rational, since by 
virtue of (2.9) and (1.4) they can be written for such 1 as a finite sum of ratios of 
polynomials. Since a rational function which has infinitely many zeros, vanishes 
identically, it is clear that Xl(k) is constant with respect to the variable k. 

In order to evaluate Xl(k), we use the property X&) = X&. With the help of 
(2.9) and (1.4) one finds: 

X ( k )  = Xd9 
- r2(3)r(2~+3) 

(21 + 2)! 

,I ( I  i f  I - 1 ‘ 1 2  - 
r (2)r2(1+3 1,=02(1 + I )  o o o 

(2.12) 
1 (21+1)!221 

[(I +f)(1 -8). . . $1’ 2(I+ 1) - (21 + l)!!2 
-- =- 

In the second step the result (2.3) has been used. Substituting (2.12) in (2.9), one 
obtains the following expression: 

(VIE N, V k  E C). (2.13) 

Wherever it may occur, we set by convention (Abramowitz and Stegun 1970) (0)!! = 1 
and (- l)!! = 1. 

For integral and half-integral values of the variable k, (2.13) can be considerably 
simplified. The reader can easily verify that 

(2t +21+ l)!! 2 
Sfl’(t  +i) = ) ( V t E N ) .  (3.2) ( 

(2t + 1)!!(2l+ l)!! 
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With a little algebra, the right-hand sides of (3.1) and (3.2) are brought into the more 
elegant forms: 

S(1) (2t- 1)!!(2t+2Z)!!(21)!! 
(f)=(2t)!!(2t+21+1)!!(21+1)!! (3.3) 

(2t)!!(2r +21+ 1)!!(2Z)!! 
( v t  E N). (3.4) S(1) 1 

(f+’)=(2t+1)!!(2t+21+2)!!(21+1)!! 

The functions r(2k + 1) and r(k + 1) have simple poles at the integer values of k 
satisfying - I - 1 < k < 0. As r ( k  + 1) appears squared in the denominator of (2.13), it 
follows that: 

si”(- t ) =  0 ( t ~  N & O <  t < I +  1). (3.5) 

We would like to remark that this result can also be deduced from equation (11) of 
Morgan (1976). A similar argument shows that 

(t € N &  O S t < l +  1). (3.6) 
1 py( - t -z)l= CO 

This can also be seen directly from (1.4), since for these t-values there is always a 
1‘-value making S { ” ( k )  infinite. 

We next turn to the evaluation of Si1)( - t) for integers t satisfying t 2 I + 1. One 
way to obtain an expression for these quantities is to calculate the residues of the 
respective functions r(2k + I), r ( k  + Z + l), r ( k  + 1) and r(2k + 21 + 2) at k = - r, with 
the help of the recursion formula: 

r(x + t +  1) 
( x  + t ) (x  + t  - 1).  . . x ’  

r(x)= 
After a few calculations, one arrives at 

(t - 1)!72t - 21 - 2)!(21+ l)! (2i)!! 2 
S i ” ( - t ) =  - ( t  E N & t s l +  1). (3.7) (2t - l)!(t - 1 - 1)!2z!2 ((21 + l)! J 
An alternative method for finding Si1’( - t )  is based on the property 

I’ ‘,“)’* 
I 1 ( 1  I‘ 1-1‘)2= I 

Si”(-t)= 1 
f’=o21’-2t+l 0 0 0 r-o21-21’-2t+l 0 0 

or 
Si1)( - t )  = - Sj”(t  - I - 1). 

The relation (3.8) is valid for all values of t. In particular it is found from (3.3) that 

(2t-2)!!(2t -2Z--3)!!(2z)!! 
(2t- 1)!!(2t -21-2)!!(21+ l)!! 

Si”(-t)= - ( t  E N & t a/+ 1) (3.9) 

which is an equivalent but more elegant form of (3.7). As it also follows from (3.8) 
that 

(3.10) Si”( - t -i)= -Sil)(t- I -f)= -Sj”(t - z - 1 +$), 

one obtains by the aid of (3.4) a last simplified formula 

1 (2r - 1)!!(2t - 21 - 2)!!(2Z)!! 
(2t)!!(2t - 21 - 1)!!(2l+ l)!! 

Sjl)(-t.-+ - ( t  E N & t 3z+ 1). (3.11) 
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Finally we notice that formulae (3.3), (3.4), (3.5), (3.6), (3.9) and (3.11) clearly 
demonstrate the property that 

(2t)!!(2t + 21 + l)!! s(l) 

(2?-1)!!(2t+21)!! 1 ( t ) ,  

is independent of t (2t E Z) which is just a restricted version of (2.8), which was shown 
to be true even for complex k. 

4. Evaluation of Si2’ (kl, k2) 

The evaluation of Si2’(kl, k2) is particularly simple if kl # k z .  Indeed, taking into 
account the identity 

1 1 
(21’+ 2k1 + 1)(21’+ 2k2 + 1) = 21’+2k1+ 1 -2v+  2k2+ 1 

one immediately obtains 

Indeed Morgan (1976) has previously remarked that any summation of the form 

can be evaluated with the help of the expressions derived for S!’ ) (k ) ,  provided that the 
function f ( l ,  z, 1’) can be written as a linear combination of reciprocals of terms linear 
in 1’. 

We now turn to the calculation of SI2’(k, k), further noted as Sf2’ (k ) .  From the 
explicit form (1.4) of Sj2’(k) it follows that 

S12’(k)= -- 1 d  --Sjl)(k). 
2 dk 

Defining a function @ ( k )  by 

r(2k + i)r2(k + I  + 1) 
r2(k + i)r(2k + 21 + 2)’ 

@ ( k )  = 

(4.2) 

(4.3) 

the essential point in the determination of Sl*’(k) by equation (4.2), is the evaluation 
of d@(k)/dk = a’(&). One finds 

W ( k )  = 2@(k)($(2k + 1)+ 9 ( k  + I + 1)- $ ( k  + 1)- $(2k + 21 + 2)), (4.4) 

where $ ( x )  is the digamma function defined by 

(4.5) 
d 

$(x) = - In r ( x ) ,  
dx 

and with the properties (Abramowitz and Stegun 1970, p 258) 

(4.6) 
1 

$(x + 1)= $ ( x ) + -  
X’ 
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1 n-1 
+ ( n x ) = -  +(x+g)+ lnn  (n = 2,3,  . . .). 

n p=o n 
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(4.7) 

Making use of (4.7), (4.4) is transformed to 

@ f ( k ) = 2 @ ( k ) [ l ( + ( k + $ ) + + ( k + 1 ) ) - + ( k + 1 ) + g ( k + 1 + 1 )  

- &(k + I + 1) + 4 ( k  + I +$))I 
= 2@(k)[ - &(k + 1) - +(k + t))  - $(+(k + 1 + b)  - 4(k  + 1 + 1 ))I. (4.8) 

In the literature on r and related functions, a function P ( x )  is introduced (Gradshteyn 
and Ryzhik 1965, p 947) 

with the recursion property 

(4.10) 
1 p(x + 1)= - P ( x ) + - .  
X 

On account of (4.9), (4.8) reduces to: 

W ( k ) =  -2@(k)@(2k+l)+P(2k +21+2)). (4.11) 

From (2.13), (4.2) and (4.11) it follows that S!”(k)  can most generally be written as 

(4.12) 

Sj2’(k)=Sl1)(k)@(2k + 1)+@(2k +21+2)). (4.13) 

It has to be noted that the method used in 0 2 for the evaluation of S { ” ( k )  is 
unsuccessful here, except for some special k-values. As an example, one can arrive by 
means of this method at the relation (for 1 # 0) 

or in the more compact form 

which, due to (2.13), reduces to 

s(2) (21)!!(21-2)!! 
I (-1)=(21+1)!!(21-1)!!* 

This result has also been mentioned by Morgan (1977). Up to now it was the only 
analytic expression available in the literature for quantities of the form (1.4) with n 
larger than 1. 

The reason for the shortcoming of the method of 0 2 for n 2 2  and general 
k-values is that the functions +(x) and p(x )  are additively recursive, as may be seen 
from (4.6), (4. lo), whereas r ( x )  satisfies a multiplicative recursion relation. Indeed, 
defining a function Yf(k) by 

(2k E h), 
(2k)!!(2k +21+ l)!! 9 2 ’  

I (k) 
Yl(k)= (2k - 1)!!(2k +21)!! 

(4.15) 
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one finds with the aid of (4.12), (4.10) and (3.12): 

(4.16) 

which in the present case is the relation to be compared to (2.10). 

5. Specid forms of ~1*’(k)  

The function P ( x )  has the following series representation (Gradshteyn and Ryzhik 
1965, p 947): 

( - l )p  
P ( x ) =  c - 

p=o x + p  ’ 
and has simple poles at x E Z-. With the aid of the well known result 

.f (-1)p+’ -- -In 2, 
P = l  P 

one derives a finite sum representation of @(n), n E N: 

Using (5.3) in (4.13) twice one immediately finds from (3.3) and (3.4): 

(2t - 1)!!(2t +2/)!!(21)!! 2r+21+1 (- l)P+l c -  s ( 2 )  
I (f)=(2f)!!(2r+21+1)!!(21+1)!! p=2r+1 p (5.4) 

( v t  E N). ( 5 . 5 )  
(2t)!!(2t + 21 + 1)!!(2l)!! 2r+21+2 (- c -  s ( 2 )  1 

I ( t  +I)= (2t + 1)!!(2t +21+2)!!(21+ l)!! p=2r+2 p 

By means of the property 

Sj”( - t )  = S12’(t - 1 - l),  (5 .6)  

two other special forms of S12’(k) are derived: 

1 - ( 2 t - 1 ) ! ! ( 2 t - 2 1 - 2 ) ! ! ( 2 1 ) ! !  E (- l )p  
Si2)( - t - 2) - (t E N & f 3 I +  1). 

(2t)!!(2t -21- 1)!!(21+ l)!! p=2t-21 p 
( 5 . 8 )  

We next turn to the evaluation of Sj2’(k) for integers k satisfying - 1 3  k 2 - 1. 
This can be done by calculating the residues of the functions r(2k + l ) ,  r ( k  + 1) and 
P(2k + l),  which have simple poles at these k-values. Another way to obtain S!”(k) is 
to calculate W ( k )  directly at k = - r with t < 1 + 1. Since @( - t) is zero due to the fact 
that the denominator has a double pole and the numerator only a single one, all 
functions which are regular and different from zero at k = - t, can be brought in front 
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of the differential operator. One thus finds: 

X " ( 2 ) i  
dk r ( k + 1 )  k = - r  

1 ( I  - t ) ! 2 ( t  - l)! 
2 (21 - 2t + 1)!(2t - l)! k = - t  

- _  - 

1 ( I  - t)!'(t - 1)12 
2 (21-2t + 1)!(2t - l)!' 

= -- 

where in one of the steps the property 

(5.9) 

r (x)r( l -  X) = T cosec (TX), 

has been used. Substitution of (5.9) and (2.13) in (4.2) yields: 

or after some simplifications 

(2t - 2)!!(21- 2r)!!(21)!! 
( t  E N & OC t <  I+  1). s(2) 

( -O= (2 t -1 ) ! ! (21 -2 t+1 ) ! ! (21+1) ! !  (5.10) 

For the sake of completeness we also note that 

Is:*'(- t -$)I = CO ( t E  N & o s  t < I +  1). (5.11) 

6. Evaluation of other S$")(kl,k2,.  . . , k.) functions 

An expression for Sio) has already been given by Morgan (1977), and can also be 
derived with the technique outlined in 0 2. One obtains: 

The general case S$'"(kl, k2, . . . , k , )  with n > 2 can be treated by splitting the 
product llr='=, (21'+ 2ki + l)-' in partial fractions. This shows that Sl"'(k1, k2, . . . , k,) 
can be expressed as a sum of quantities Sf' (kl,. . . , k i )  with j C n ,  as long as not all 
ki-values (i = 1,2, . . . , n) are equal. In the latter case one introduces the notation 
Sf '" (k )=  Sf'" (k, k, . . . , k), and the generalisation of (4.2) reads: 
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By comparing (4.13) with (4.2) one finds that S!"(k)  satisfies the following differential 
equation: 

H E  De Meyer and G Vunden Berghe 

dSj"(k)= -2S11'(k)@(2k + l )+P(2k  +21+2)), 
d k  

showing us that S$"(k)  can also be written in the form 

~ l " ( k ) =  c eR(k), 

R ' ( k ) =  -2@(2k+l)+P(2k+21+2)). 
with 

By means of Fah di Bruno's differentiation formula (Abramowitz and Stegun 1970, 
p 823) one then obtains from (6.3): 

where the sum is taken over all natural numbers, al ,  a2,. . . , an-l, satisfying 

a 1 + 2a2 + . . . + ( n  - l)un-l = n - 1, (6.6) 

U l + f f 2 + .  . . + a n - l c n - l ,  (6.7) 

(6.8) 

and where ( n  - 1, al, . . . , an-1)' is given by 

(n - 1, ~ 1 ,  . . an-1)' = (n  - l ) ! / ( l ! ) "*~1!(2!>~~~2!  . [ ( n  - I)!]Qn-l~n-l!. 

Consequently, Sl"'(k) can be written as 

where the summation convention (6.6), (6.7) is understood. 
In the right-hand side of (6.9) the sum of the p functions can be written as a finite 

sum for all non-negative integral and half-integra1 values of k. Indeed, p'"'(x) has the 
series representation (Gradshteyn and Ryzhik 1965, p 947) 

(-1)P p'"'(x) = (- 1)"n ! c 
p=o ( x  +p)"+l'  

whereas 

f m = (1 - 21-")[(n) (Re n > 0), 
p = l  p" 

(6.10) 

(6.11) 

l ( n )  being the Riemann zeta function. From (6.10) and (6.1 1) it follows that 

With the relation 
S b )  n (n) 

I (-?)=(-1) SI ( t - l - 1 ) ,  (6.13) 

the result can then be continued to all integral and half-integral values of k satisfying 
k s - 1 - 1, while for integral values of k satisfying - I  - 1 < k 0 a residue calculation 
is needed for the evaluation of Sl"'(k). 
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7. Conclusions 

The sums of the form 

are analytically expressed in terms of gamma functions and higher transcendentals. It 
has been shown that the general result deduced contains the relations, previously 
proved by Morgan (1975, 1976, 1977), Rashid (1976) and Vanden Berghe and De 
Meyer (1976) as particular cases. A set of simple orthogonality relations of the form 

I 1 ( 1  I’ 1 - 1 ’ ) 2 = o  
Sl”(-r)= 1 ( t E  N & O < t <  I +  l ) ,  

I’=o21’-2t+l 0 0 0 

has been obtained. They represent a generalisation of a previously proved ortho- 
gonality relation (Morgan 1975), which corresponds to the t = 1 case. For n > 2 
special attention has been drawn to those of the sums considered, where two or more 
of the ki-values coincide. Although Morgan (1977) alleged that the evaluation of this 
kind of summation is difficult for general ki and n, we were able to derive in the last 
section a complete general analytical expression for relations of the form 

l ’  l - T  = zo (21’+ 2k + 1)” 0 0 

1 

0 
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